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SUMMARY

An spproximste relstion is derived for the surface velocity
potential of thin pointed wings at supersonic speeds when they are
contained within the Mach cons from the vertex. This relation is
applied to obtain the viessure distributions, the 1lift and drag
coefficients, the center of pressure; and the rolling moments as
& function of angle of yaw for the delta wing. Theoretical curves
are presented for a Mach number of /2 to illustrate the relations.

INTRODUCTION

The linearized sequation of compreesible flow at supersonic
speeds has been applied by Stewart (reference 1) and Brown (refer-
ence 2) to obtain the 1ift distribution of a thin delta wing with-
out yaw. Special cases of yawed delta wings have been solved by
Hayes of North American Aviation, Inc. All these solutions are
Blmplified by the Tact that the flow 1s conical. This simplifica-
tion is inapplicable if the leading edges are curved, o

A general method has been developed (the basic principle of
which is presented in reference 3) for obtaining the 1ift distri-
butlon of thin wings of arbitrary plan form and profile. Although
the method may be applied in principle to obtain the effects of
yewing the thin pointed wing, the practical evaluation of thse
integrals appears to be difficult even by numerical methods. Never-
theless, an approximate solution to the problem mey be obtained
that will indilcate the effects of the plan-form leading-edge curva-
ture and of yaw on the asrodynemic coefficients of the wing.

An gpproximate solution for the surface velocity potential of
thin pointed wings at supersonic speeds when the leading edges are
included within the Mach cone from the vertex was developed during
March 1947 at the NACA Cleveland laboratory and is presented
herein. The solution is applied to calculate the pressure

'
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distritution, the center of pressure, and the wave lift end drag
coefficients of the delta wing as functions of yaw angle.

ANATLYSIS

The basis of the derivation for the surface veloclty potential
i3 to replace the influence of the pointed wing and the flow field
between the leading odge and the foremost Mach waves by an approxl-
mately equivalent wing surface wlthout external disturbing flow
fields when the veloclty potential at some local point on the wing
ig calculated. The approximations that are applied will be
described in detall for the case of the delta wing.

When the leading edges of the delta wing are swept back along
the Mach lines (fig. 1(a)), there is no external flow fleld repre-
genting intsraction between the top and bottom wing surfaces. The
correct values of the velncity potential &t any point on the top
wing surface may therefore be obtained through the methods of
roference 4 by an integration over the parallelogram area S
boundel. by the leading edge end the forward Mach cone from the
point (x,y); that is

Uo at 4
= 02 2ty (1)
T 5 4
- - V@) - B (v -n)
S8y '

vhere . B e e e =; .
® velocity potential at point (i,y) oﬁ_top wing

surface o -
2] .- . Pree-stream velocity '
@ - - . engle of attack (negative flow-deflection angle ﬁn =

- top wing surface in y= constant plans)
xor £, y orn Cartesian coordinates
B e m o MBa

M SR 'free-séream Mach number

(See references 3 or 4.)
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If the wing is swept behind the Mach cone from the vertex butb )
"1s go yawed thet one of the leading edges coincides with the Mach N
line (fig. 1(b)), the veloclity potential will still be correctly = -- - -
obtalned by integrating equation (1) over the parallelogram area Sw,0 :
defined by the forward Mach lines from the point (x,y) and the
wing leading edges. '

According to the methods of reference 3, the contribution to
the potentlal &t polnt (x,y) from the external flow field Sp 1s

dt dn ‘o
5, , /(=02 - pErn?)

2

Oh = -a

= Py, . _ o

where cPw,l is the portion of the potential contributed by the

wing region Sy,1. The external field Sp thus effectively can-
cels the influence of the wing portion Sw,l-

The case including yaw with both lsading edges swept behind
the Mach cone from the vertex may now be considered. (See
fig. 1(c).) The potential at point (x,y) is influenced by both
the wing surfaces SW(O +14+2+3) and the external fields off the

wing surfaces SD(1+2+5+4). The potential is then "

J (z-£)2 - p¥(z-n)? S

b
_ J S (0+14+2+3)

-I_I r : 7\5-55-11 _ (2)
v (x-8)2 - g%(y-n)°

B
_l Sp(1+2+3+4)

where A represents the slops of the stream sheet in the external
flow field near the x,y plane measured in 17 = congtant planes.
By the methods of reference 3 o



. Ad £ dn - [f a dt dy (3)
|

| s ~ [ f ~ i P
= _J_J'SD(2+EH-4) Jiz-5)? - pi(yn)? Vowessy =07 - g2rn)°

W 0 aat an adt an W
| V-0 - gy Six-p)? - )
JJSD(].TB-H.) Uﬂw(1+3) |
Substitution of equatiops (3) and (4) into equation (2) yields
o= 2 ” __df dn T_Ij:” 4k an .U ” | . hdfdn
7 14

oo THZ . a2(e12 0% - plyen)’ 12 e2(von)2
.' JJSW,O J(x-B2 - p2(3- '1) “31;,3 Jx-t) (=) JJSD(M.) J(x-t)2 62 (y-n)

(5)

Because A and o have the same sign (reference 3), the second eand third integrals of
equation (5) tend to counteract each other. Furthermore, as the sweepback of the leading edges

- approaches thke Mﬁch lines from the vertex, the arecas Sw 3 end BD(;r,....;) approach zero and

o-w 0 increases. \J_ﬂt.‘- 1imiting case is shown in fig. .LLE!.} } The secend and third imtegrais of

equatlion (5) may therefore be neglected, provided that the sweepback is not toc much greater then
the Mach angle. Within the valldlty of this approximation, the potential may be caloulated from

~ the shaded area Sy g (f1g. 1(e)).

dard

‘o NI VOVN

62¥%T
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A comparison of the results thus Par obtained shows that tho
parallelogram representstion of the thin deita wing is exact ror
the two limiting ceses (fig. 1(a) and fig. 1(b)), but is approxi-
mate for the general cage (fig. 1(c)).- The error in the spproxi-

matlon is.likely to be greatest for wings swept considerably behind

the Mach cone from the vértex and for wings at zero angle of yaw.
The parallelogram approximation may likewlise be applied when the

leading edges of the wing are gently curved on the plan for'm, as in
filgure 2.

A set of oblique coordinates (u,v) having axes parailel to
the Mach waves simplifies the calculation of the veloclty poten-
tial., In this sybem one of the coordinates of & point is the dis-
tance measured parallel to the coordilnate axis from the point to
the other coordinate exis. The transformation equations from :
Cartesian to obligue coordinstes are R

u = 5% (E-81)

v = EME (¢ +Bn)

£ = % (v+u)

ez (v (e

Inasmuch es the elemental aree in the (u,v) coordinate sys-
tem is 1\2?% du dv, transformation of equation (1) by r'ela'bions (8)
yields

- U du dv . ()

s «/(uw-_-u) (v=7) -
Pw, 0 ST

where wu, and v, are the obligque coordinates of the point (x,y).

Equation (7) becomes (see fig. 2)
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Wy - ‘-Tw- : -

o= U2 _dw av _
- u_z(vw) . v_l(uw) _

40 / Py - v10o)] [0 - a(m)]  (®)

In the special case of the delta wing (fig. 3), the equations for
the leading edges are v S

v = vy(u)

]
w
]

1

&
™

d

u = up(v)

where ki and kp are positive constants.

In this case, equation {8) becomes

o= 4U°° iy vy) (wy-kp Vw)

| - —ZUK% ,/[x(l—kl) 8y (L) [x(2-kp) - By(Lekz)]  (9)

Now tho pressure coefficient Cp is
— -—2 .-.— - E . N

where Ap 18 the local statlc pressure minus the freo-stream static
presgure and g is the incompressible dynamic pressure %—pU (p is

density). Insertion of eguation (9) into equation (10) yielde

<@

cp = - ;tz% J(1kp) (1-kp)

[ H
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By application of equations (8) snd with the aid of figure 3,

1 - g tan{6+l)

k1= 17 B tan(6+1V)

. = B tan(8-\) .
2 = I 5 %an eV (12)

i

|} . [
where 1\ 1s the angle of yawv end 20 1is the vertex argle of the
delta wing. Svbstitution of equation (12) into equation (11)
yilelds : :

Cp = - _49'_\/ tar{6+\V) tan(@-V) /l + anyi an(6+0)
® {148 ten(6+W)] [1+p tan(o-w)] ’\ 1 - __‘(%EW

N 1-%&%‘—\1:77 g | - (li- ,.%
L gthyy | Eer” e

AL

This equation indicates the pressure distr;bution on the thin delta
wing swept behind the irch angle at angles of yaw. Th"e equatjon 1s
exact if tean @ or tan(6+)) or (9-1]1) :;,,e;l . The
greatest error should occur when O ‘and ‘tan © << /B r"he o
accuracy of the expressica increases with angle oL yaw as long as
the wing lies within the Mach cone from the vertex.

The cage of W = 0 has been solved exactly by the authors of
references 1 and 2, For W = 0, the approximate equation (13)
reduces to :

wh
4 2 1Y
Cp = 4 -2a tan € . —/'.N/,ﬁ =0 (14)
%(1+p tan 6) 2 i _ RO
1 - /=)
ten® @

The bracketed portion of equation (1l4) gives the same type varia-
tion of the pressure coefflcient over the wing surface as was

obtained 1n references L and 2. The factor 4 s how-
n(l+p tan 6)
ever, is somewhat different, The uncorrected values of the factor
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are compared with the trus values of the factor -( cbtained from the
expressions of reference 1 end the table of complete elliptic

integrals E of the second kind with modulus '/-IL-ﬁzta.nze_, rofer-

ence 5) In the following table: . "

|

¥
&

§ tan € | Uncorrected True vealue of

value of factor, F! facto{, F
4 —
7 (1:p tand) E(/1-p2tan?6)
1,00 0.6366 0.8366
.9 6701 .6697 -
.8 . 7074 . 7052 _
.7 . 7490 : 7432
.8 .7958 .7835
.5 .8488 .8257
.4 2095 .8690 .
.3 .9794 .g121
.2 1,060 .9520 ;
.1 1.1575 .9842 -
0 1.2732 1.0000 }

Equation (14) (and, consequently, eguatlon (13)) thus appsars
reasonably accurate, even when f tan 6 18 as low as 0,5.

In numerical calculations involving eguation (1.3), the
accuracy of the factor

T = e (38)
x o/ [14p ten(esy)] [4p tan(6-y)] '
may be improved by correction to give the true value at V¥ = O,
The original F' and the estlmated value of F are plotted
against W and 6 for B = 1 (that 1s, M = +/2) in figuro 4.
In wractice, for small angles of yaw, F may be set equal to the
correct value at ¥ =0 of : - =
F e _ L . V&0 -
E( /1-2tance)
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(The exact valune of the factor F has recently been derived
by Max A. Ieaslet, Harverd Lomex, and Arthur L. Jones of ths NACA
Ames laboratory and is, in the notaetion of this paper,

2G

-1
Tk \/B [ran(6+¥) + ban(8-9) ]

where E 1s the complete elliptic integral of the second kind with

modulue equal to ./ 1-G% &nd

- 1482 tan(6+V) tan(e-y) -«/[:l_-az _tanz(6+\l/)] [1-p2 tan®(0-U)] ]

B [tan{o+y) + tan(6-¥)]

For pressure-distribution studies, the pressure coefficient is
convenlently defined with respect to a set of coordinates fixed on
the wing. The pressure coefficient in terms of the wing coordinate
system (x;,y;) is derived in the appendix as eguation (43) and is

; ( tan 6
tan®0 - tanZy £

enf.rtany

)

1

Cp = - oF Tan 8

1
+ (tan@+tan\Tf) bl

1-tan®6 tan? /
an’ a.n\ll'\(t

tan 8 ) _ 1 ) -Yl—l
tan® tanyy/ \tanb-vany, X1

\ tan 6 ) . ( 1 )y_l
) tanb+tanV tanb+tan V) Xq

) - (eammme) =
an6-tenV/  \tan@-tanV X

(18)

The wave 1ift coefficient Cy, of the yawed wing may be deter- )
mined by integrating the pressure coefficient over the wlng sur-
face, This integration is performed in the appendlx as equa-

tion (A5) to give

CL - 2l tané
A1 - tan®0 tendy

lexy| < tan"lﬁl (17)

A comparison of equations (16) and (17) shows that the 1ift
coefficient is related to the pressure coefficient at the center of

the wing through the equation
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where CP is evaluated at ¥, = 0. This relation does not contain

the coefficient F and hence is exact. Variations of-Mach number,
angles ofattack and yaw, and vertex half-angle of the delta wing
swept behind the Mach angle do not alter the relation. A gimple .
experimental pressure measurement will thus give the 1lift coeffi-
cient of the deltae wing. By the principles of superposition, the
pressure coefficient of the thin delta wing may be obtalned as one-
half the difference of the pressure coefficients on the top and
bottom surfaces of a symmetrical-profile finite-thickness delta
wing of the same plen form. The wave drag coefficient (neglecting
leading-edge suction) is o« times the 1ift coefficilent or, with
the use of eguation (17), is

2:1@2 P tansd

= (19)
~/‘l - tanZ@ ta.nz'dl

- Cp

~

Trus both the wave lift and the wave drag coefficlents increase
with yew (primarily because of the varlation in F, fig. 3), as

does %%L It should be noted, however, that o 1s the flow-
deflectlon angle of attack of the yawed wing; the relatlion between

o and the angle «', which the delte wing (rotated about its
base) mekes with the plane of zero angle of attack, is

o= ol cds\il__ - . (20)

Inssmuch as the Clow is conlcal on the yawed delta wing, the
center of pressure lilss along a line parallel to the base at a dis-
tance g-xc (vhere x, is the meximum chord) from the vertex., As

shown in the appendix (equation (Al10)), the wing coordinates of the
center of pressure are given as

— 2
xl = -3- Iq

- (21)
yp = - 5 teov

=

The center of pressure therefore lies on & line perallel to
the x =axlse passing through the midpoint of-the tralling edgs.

P .. _ . - .. - - P
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The geometric location of the center of pressure is shown in
flgure 5. Because the coefficient F cancels in tke calculetion
of the center of pressure, the expressions obtained are exact. -

The rolllng moment about the bisector of the vertex angle . o
(that 1s, y; = 0) may be obtained from eguations (21) and (17).

In terms of the maximum chord, the rolling-moment coefficient C,
is -

2red tan e_tanw

- (22),

Ty
C-L = —— CL = -
%o /1 - tan®6 tan®y
The pltching moment about the axis EI = g X, is zero for
all values of yaw. o

APPLICATIONS OF THEORY

In order to illustrate the effects of yaw, the pressure coef-
flclent on a thin delta wing of vertex half-angle :tan';_o.é_ at a
Mech number ./ 2 is presented in figure 6. In the computations,
a corrected value of F (dotted curves of fig. 4) was used, The
pressure coefficient svems to remain nearly constant along the ' -
center line and approachesg infinity near either leal@ing edge. As ——
the angle of yaw 13 increased, the pressures on the least-swept
side of the wing lncrease whereas the préssures on the most-swept
glde decrease. For the case V.= 6, +the pressure coefficient.on
the most-swept leading edge (90° sweepback) becomes 0, (See
equation (16).) For greater angles of yaw, the pressure coeffi-
clent is negative over a portion of the wing surface. (The solu-
tlon obtained when the sweepbazck of one of the leading edges 18
greater than 90° does not conform to the Kutta-Joukowski condi-
tion for so-called subsonic trailing edges. For this rsascn, the
¥ = 23.2° curve is. dashed.)

Corresponding to the shift in the pressure distridbution (and
center of pressure), a change In the 1lift and drag coefficients
occurs. (See eguations (17), (18), and (19).) The varlation of
the lift-curve slopes OCp/da and JCr/da’ are presented in
figure 7. In terms of the flow-deflsction angle of atbtack «,
the lift-curve slope increases with engle of yaw. In terms of the
geometric angle of attack o' (the wing considered to be rotated
about- its base), the lift-curve slope decreases with angle of yaw,
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The rolling-moment coefficients of the wing about the bilsector
of the vertex half-angle are presented as & functlon of angle of
yaw in flgure 8, These coefficlents werse. calculated from egua-
tions {20) and (22) for M = /2 and 6 = tan-* 0.4. The rolling-
moment coefficient is seen to be proportional to the angle of
attack end 1s nearly proportional to the angle of yaw. A con-
siderabls rolling moment-develops at large angles of yaw.

RESULTS OF ANALYSIS

An analyzis of the yawed delta wing at supersonic speeds con-
flned within the Mach cone from the vertex gave the following
results:

1. Yawing a delta wing shifts the pressure distribution In
such a manner as to increase the magnltude of-the pressure coef-
ficlent on the least-swept side of the wing and decrease the pres-~
sure coefficient on the meost-swept side of the wing.

2. The center of preasgure of the yawed delta wing lies along
a line parallel to the free-stream direction passing through the
center of the delta base and at & distance two-thirds of the maxi-
mum chord from the vertex. A considerable rolling monment may
therefors be experienced at large angles of yaw,

3. The lift-curve slope Of the delta wing generally depends
on the Mach number, the angle of sweepback, and the angle of yaw.
The lift-curve slope of a delta wing of semi-vertex angle
tan~l 0.4 at a Mach number of ./ 2 either increaeses or decreases
with angle of yaw, depending upon whether the flow-deflection
angle of attack or the geometric angle of attack is used, The
ratio of the two lift-curve slopes is the cosine of the yaw angle.

4. The absolute value of the ratio of lift -coefficient to
nreggure coefficient at the center of the yawed thin flat-plate
delta wing is found to be . :

Fllght Propulsion Research Laboratory, - - - o T T
National Advisory Committee for Aeronautics,
Cleveland, Ohio, July 10, 1947.
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APPENDIX - CALCULATION OF AFRODYNAMIC COEFFICIENMIS OF . .. __

YAWED DELTA WING

A set of Carteslan coordinates (x3,yq) defined on the wing

surface ls convenient for calculating the 11ft coefficient of the
thin delta wing. The trensformation equations are -

X

%, cosl + oy sinV
(AL)

¥y =y cos¥ - x sinV

The guantity y/x then becomes

1

E—~- tan\lj o
X ¥

—= tany + 1 .

*

The pressure coefficient, equation (13), then becomes

( ten 0\ ., ( 1 ) 71
C = - oF tan®6 - ta_nzxp tan9+tanxl/) tanb+tany) X1
P 1 - tane tan®y \ ten 6 T1

- L )__.
tane—tan\{/) (tane-tan{l} Xy

ten 6 )_ ( 1 1
tanfd-tanV tang -tan\lf) X3

t 2] (AS)
an .
’oan6+.ta.n’¢f) + ‘\tan6+tan'¢/) TCI

-

Becauge the flow is oonical ’che 1ift may be evaluated by using a
x4y
triangu.lar infinitesimal area d4S = Cz I, where x, is the maxi-

mum chord. The coordinates and the infinitesimel area are shown
in the following sketchn:
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The 1ifs coefficient 1s given as

lﬁ - Xc tané
|-2C as ~Cy x4y, tand
. J' p . -X, ‘tané BT 1 an C'l\
L= = e = - s de-;-/(At!:)
J\ds X;~ tené -tané |

Substitution of Cp from eguation (A3) into (A4) and integration
by formulas 111 ang 113 of reference 6 ylelds

I

t
[

1

- e

|
3l

£
e
LA
[}
|!|

i
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2naF tand
g = . (85)
\/ 1-tane tanz‘tl/ ’
provided that
le:b\[;‘gtan'l-]:. B
B
The center of pressure (X7, ¥1) will lie along the mean
chord or Xj = 3 %o from the vertex. The other coordinate of the
center of pressure may be obtained from en evaluation of the
expression, s ’
tané
(Eriz
Cal — i =
D\E, /T\Xq,
¥ -
1 tané
J
Cp d(}-}
1
~tané
The integral in the numerator masy be evaluated by equations 112,
113, and 172 of reference 6 to gilve (for the case VY < 8)
tan 6 / tean 6 ( 1Y yl
\Teno-tany Tand +tan\[:) xT
wan s |A[(_teme Y Vo
\tan6-tany tane-tan\ll z
tan @ \ 71
(tane-tan\y (tane “tang) 71 |{7 1) ol 3_1): _ _x_tanV tan® 6
- »\/tanze -,'banz\l!

tan 0
(tan6+tan\[/> + (tan9+tan$) EJ

(A7)
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The integral of the denominator may be evaluated by—formulas 111
and 113 of refererce 6 to glve -
r
ten 6 | tan 9 . { 1 )EZE
l tan9+tan¢) \ tand+tanV/ x1
ten 6\ 1 1
~-ten O [ (;ane-tanW) (tane—tan ) xy
tan @ ) ( ! o
'bane-tan\lf t'ane—ta.m,f % d({}_ _ 2n tan” @
==
\/ ten @ )_1 1/ o ten®6 - tan®y
tan6+tan\ tan9+tanxf x 1]
. (A8)
Therefors, o
Y1 _ _ teny (AS)
e 2
i
(A similar derivation, with due regard to the sign of the radical,
shows that eguation (A9) also appliss when WV >6 provided that _
the pressure coefficient may be represented by equation (A3).) The
coordinetes of the center of pressure are then
—_ 2
xl = -g xc
(A10)
yl = = 3 tan ¥
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(a) Wing swept back along Mach lines without yaw.
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(b) Wing so yawed that one leadin§ edge colncldes with
Mach %ine v = 0 and with other leadlng edge swept

behind Mach line u = Q,
Figure |. - Parallelogram representation of delta wing.
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(¢) Yawed wing with both leading edges swept behind Mach line.
Figure |, - Concluded. Parallelogram representation of delta wing.
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Figure 2, - Field of integration for parailelogram representation of the

R pointed wing with curved leading edges.
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Figure 4. - variation of the factor F with angle of yaw y at Mach
number = —2.
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